33 research outputs found

    Analysis and Optimization of A Double-IRS Cooperatively Assisted System with A Quasi-Static Phase Shift Design

    Full text link
    The analysis and optimization of single intelligent reflecting surface (IRS)-assisted systems have been extensively studied, whereas little is known regarding multiple-IRS-assisted systems. This paper investigates the analysis and optimization of a double-IRS cooperatively assisted downlink system, where a multi-antenna base station (BS) serves a single-antenna user with the help of two multi-element IRSs, connected by an inter-IRS channel. The channel between any two nodes is modeled with Rician fading. The BS adopts the instantaneous CSI-adaptive maximum-ratio transmission (MRT) beamformer, and the two IRSs adopt a cooperative quasi-static phase shift design. The goal is to maximize the average achievable rate, which can be reflected by the average channel power of the equivalent channel between the BS and user, at a low phase adjustment cost and computational complexity. First, we obtain tractable expressions of the average channel power of the equivalent channel in the general Rician factor, pure line of sight (LoS), and pure non-line of sight (NLoS) regimes, respectively. Then, we jointly optimize the phase shifts of the two IRSs to maximize the average channel power of the equivalent channel in these regimes. The optimization problems are challenging non-convex problems. We obtain globally optimal closed-form solutions for some cases and propose computationally efficient iterative algorithms to obtain stationary points for the other cases. Next, we compare the computational complexity for optimizing the phase shifts and the optimal average channel power of the double-IRS cooperatively assisted system with those of a counterpart single-IRS-assisted system at a large number of reflecting elements in the three regimes. Finally, we numerically demonstrate notable gains of the proposed solutions over the existing solutions at different system parameters.Comment: 40 pages, 7 figures. This work is submitted to IEEE Trans.Wireless Commun. (under major revision

    Hopf Bifurcation Control in a FAST TCP and RED Model via Multiple Control Schemes

    Get PDF
    We focus on the Hopf bifurcation control problem of a FAST TCP model with RED gateway. The system gain parameter is chosen as the bifurcation parameter, and the stable region and stability condition of the congestion control model are given by use of the linear stability analysis. When the system gain passes through a critical value, the system loses the stability and Hopf bifurcation occurs. Considering the negative influence caused by Hopf bifurcation, we apply state feedback controller, hybrid controller, and time-delay feedback controller to postpone the onset of undesirable Hopf bifurcation. Numerical simulations show that the hybrid controller is the most sensitive method to delay the Hopf bifurcation with identical parameter conditions. However, nonlinear state feedback control and time-delay feedback control schemes have larger control parameter range in the Internet congestion control system with FAST TCP and RED gateway. Therefore, we can choose proper control method based on practical situation including unknown conditions or parameter requirements. This paper plays an important role in setting guiding system parameters for controlling the FAST TCP and RED model

    Joint and Competitive Caching Designs in Large-Scale Multi-Tier Wireless Multicasting Networks

    Full text link
    corecore